Endowed in memory of George Michael, one of the founding fathers of the SC Conference series, the ACM IEEE-CS George Michael Memorial Fellowships honor exceptional PhD students throughout the world whose research focus areas are in high performance computing, networking, storage, and large-scale data analysis. ACM, the IEEE Computer Society, and the SC Conference support this award.

Fellowship winners are selected each year based on overall potential for research excellence, the degree to which technical interests align with those of the HPC community, academic progress to date, recommendations by their advisor and others, and a demonstration of current and anticipated use of HPC resources. The Fellowship includes a $5,000 honorarium, plus travel and registration to receive the award at the annual SC conference.

2016 ACM/IEEE George Michael Memorial HPC Fellowships Announced

Johann Rudi of The Institute for Computational Engineering and Sciences (The University of Texas at Austin) and Axel Huebl of Helmholtz-Zentrum Dresden-Rossendorf (Technical University of Dresden) are the recipients of the 2016 ACM/IEEE George Michael Memorial HPC Fellowships. Rudi is recognized for his work on a recent project, “Extreme-Scale Implicit Solver for Nonlinear, Multiscale, and Heterogeneous Stokes Flow in the Earth’s Mantle,” while Huebl is recognized for his work, “Scalable, Many-core Particle-in-cell Algorithms to Simulate Next Generation Particle Accelerators and Corresponding Large-scale Data Analytics.”

Johann Rudi’s recent research has focused on modeling, analysis and development of algorithms for studying the earth’s mantle convection by means of large-scale simulations on high-performance computers. Mantle convection is the fundamental physical process within the earth’s interior responsible for the thermal and geological evolution of the planet, including plate tectonics.

Rudi, along with colleagues from Switzerland and the United States, presented a paper on mantle convection at SC15, the International Conference for High Performance Computing, that was awarded the ACM Gordon Bell Prize. Rudi and his team developed new computational methods that are capable of processing difficult problems based on partial differential equations, such as mantle convection, with optimal algorithmic performance at extreme scales.

Axel Huebl is a computational physicist who specializes in next-generation, laser plasma-based particle accelerators. Huebl and others reinvented the particle-in-cell algorithm to simulate plasma-physics with 3D simulations of unprecedented detail on leadership-scale many-core supercomputers such as Titan (ORNL).

Through this line of research, Huebl also derives models to understand and predict promising regimes for applications such as radiation therapy of cancer with laser-driven ion beams. Interacting closely with experimental scientists, their simulations are showing that plasma-based particle accelerators may yield numerous scientific advances in industrial and medical applications. Huebl was part of a team that were Gordon-Bell prize finalists at SC13.

Press Release 

Two Students Named Recipients of ACM/IEEE-CS George Michael Memorial HPC Fellowships

Maciej Besta, a PhD student in the Scalable Parallel Computing Lab led by Professor Torsten Hoefler at ETH Zurich, won recognition for his project, "Accelerating Large-Scale Distributed Graph Computations."  During first year as a PhD student, Besta successfully completed several projects related to various HPC subdomains, which secured Besta the first Google European Doctoral Fellowship in Parallel Computing.
Besta's research interests focus on improving the performance of large-scale graph processing in both traditional scientific domains and in the emerging big data computations. Besta and his advisor also collaborate with researchers from the Georgia institute of Technology on designing a novel on-chip topology for future massively parallel manycore architectures that improves the performance of network traffic patterns present in graph processing workloads.
Dhairya Malhotra, a PhD student at the University of Texas at Austin actively working in the field of high performance computing, won recognition for his project, "Scalable Algorithms for Evaluating Volume Potentials." As an undergraduate intern, Malhotra was part of the group that won the 2010 ACM Gordon Bell Prize for "Petascale Direct Numerical Simulation of Blood Flow on 200K Cores and Heterogeneous Architectures," where he had implemented performance critical GPU code using CUDA.
Malhotra's research focuses on developing fast scalable solvers for elliptic PDEs such as Poisson, Stokes and Helmholtz equations. Additionally, a significant contribution of Malhotra's research has been development of the pvfmm library (Parallel Volume Fast Multipole Method) for evaluating volume potentials efficiently.