For his project, "Extreme-Scale Solver for Earth's Mantle Convection: A Spectral-Geometric-Algebraic Multigrid Based Implicit Solver for Nonlinear, Heterogeneous Stokes Flow with Scalability to 1.6M Cores"

ACM Gordon Bell Prize
United States – 2015



An Extreme-Scale Implicit Solver for Complex PDEs: Highly Heterogeneous Flow in Earth's Mantle.

Trailblazing Approach to Modeling Earth’s Geological Processes Wins Gordon Bell Prize

Team Employs a Number of New Advances to Make Extreme Scalability Possible

Austin, Texas, November 20, 2015 – A 10-member team led by Johann Rudi of the University of Texas at Austin are the recipients of the 2015 ACM Gordon Bell Prize for their entry entitled An Extreme-Scale Implicit Solver for Complex PDEs: Highly Heterogeneous Flow in Earth's Mantle. The winning team includes representatives from the University of Texas at Austin, IBM Corporation, California Institute of Technology and the Courant Institute of Mathematical Sciences at New York University. The ACM Gordon Bell Prize tracks the progress of parallel computing and rewards innovation in applying high performance computing to challenges in science, engineering, and large-scale data analytics. The award was bestowed during SC15 ( in Austin, Texas.

 The group's submission demonstrates that, contrary to conventional wisdom, implicit solvers can be designed that enable efficient global convection modeling of the earth's interior, allowing researchers to gain new insights into the geological evolution of the planet.

The team presented a solver which can process difficult partial differential equations (PDEs) at an extreme scale to predict activity in the earth's mantle and that scales up to half a million cores. By effectively modeling these processes, scientists can better understand the dynamics that produce earthquakes and related natural disasters. Mantle convection is just one application in the physical sciences wherein processing difficult PDEs at an extreme scale would be useful.

Team members include Costas Bekas (IBM), Alessandro Curioni (IBM), Omar Ghattas (University of Texas at Austin), Michael Gurnis (California Institute of Technology), Yves Ineichen (IBM), Tobin Isaac (University of Texas at Austin), Cristiano Malossi (IBM), Johann Rudi (University of Texas at Austin), Georg Stadler (Courant Institute of Mathematical Sciences), and Peter W.J. Staar (IBM).

Innovations from advanced scientific computing have far-reaching impact in many areas of science and society, from accurately predicting storms and other weather phenomena, to economic forecasts and developing new pharmaceuticals. The annual SC conference brings together scientists, engineers and researchers from around the world for an outstanding week of technical papers, timely research posters, tutorials and Birds-of-a-Feather (BOF) sessions.


 Gordon Bell 2015 Press Release

2016 ACM/IEEE George Michael Memorial HPC Fellowships Announced

Johann Rudi’s recent research has focused on modeling, analysis and development of algorithms for studying the earth’s mantle convection by means of large-scale simulations on high-performance computers. Mantle convection is the fundamental physical process within the earth’s interior responsible for the thermal and geological evolution of the planet, including plate tectonics.

Rudi, along with colleagues from Switzerland and the United States, presented a paper on mantle convection at SC15, the International Conference for High Performance Computing, that was awarded the ACM Gordon Bell Prize. Rudi and his team developed new computational methods that are capable of processing difficult problems based on partial differential equations, such as mantle convection, with optimal algorithmic performance at extreme scales.

Press Release