Latest from ACM Awards
2020 ACM Prize in Computing
ACM named Scott Aaronson the recipient of the 2020 ACM Prize in Computing for groundbreaking contributions to quantum computing. Aaronson is the David J. Bruton Jr. Centennial Professor of Computer Science at the University of Texas at Austin.
The goal of quantum computing is to harness the laws of quantum physics to build devices that can solve problems that classical computers either cannot solve, or not solve in any reasonable amount of time. Aaronson showed how results from computational complexity theory can provide new insights into the laws of quantum physics, and brought clarity to what quantum computers will, and will not, be able to do.
Aaronson helped develop the concept of quantum supremacy, which denotes the milestone that is achieved when a quantum device can solve a problem that no classical computer can solve in a reasonable amount of time. Aaronson established many of the theoretical foundations of quantum supremacy experiments. Such experiments allow scientists to give convincing evidence that quantum computers provide exponential speedups without having to first build a full fault-tolerant quantum computer.
“Few areas of technology have as much potential as quantum computation,” said ACM President Gabriele Kotsis. “Despite being at a relatively early stage in his career, Scott Aaronson is esteemed by his colleagues for the breadth and depth of his contributions. He has helped guide the development of this new field, while clarifying its possibilities as a leading educator and superb communicator. Importantly, his contributions have not been confined to quantum computation, but have had significant impact in areas such as computational complexity theory and physics.”
Notable Contributions
Boson Sampling: In the paper “The Computational Complexity of Linear Optics,” Aaronson and co-author Alex Arkhipov gave evidence that rudimentary quantum computers built entirely out of linear-optical elements cannot be efficiently simulated by classical computers.
Aaronson has since explored how quantum supremacy experiments could deliver a key application of quantum computing, namely the generation of cryptographically random bits.
Fundamental Limits of Quantum Computers: In his 2002 paper “Quantum lower bound for the collision problem,” Aaronson proved the quantum lower bound for the collision problem, which was a major open problem for years. This work bounds the minimum time for a quantum computer to find collisions in many-to-one functions, giving evidence that a basic building block of cryptography will remain secure for quantum computers.
Classical Complexity Theory: Aaronson is well-known for his work on “algebrization”, a technique he invented with Avi Wigderson to understand the limits of algebraic techniques for separating and collapsing complexity classes.
Making Quantum Computing Accessible: Beyond his technical contributions, Aaronson is credited with making quantum computing understandable to a wide audience. Through his many efforts, he has become recognized as a leading spokesperson for the field. He maintains a popular blog, Shtetl Optimized, where he explains timely and exciting topics in quantum computing in a simple and effective way. His posts, which range from fundamental theory questions to debates about current quantum devices, are widely read and trigger many interesting discussions.
Aaronson also authored Quantum Computing Since Democritus, a respected book on quantum computing, written several articles for a popular science audience, and presented TED Talks to dispel misconceptions and provide the public with a more accurate overview of the field.
“Infosys is proud to fund the ACM Prize in Computing and we congratulate Scott Aaronson on being this year’s recipient,” said Pravin Rao, COO of Infosys. “When the effort to build quantum computation devices was first seriously explored in the 1990s, some labeled it as science fiction. While the realization of a fully functional quantum computer may still be in the future, this is certainly not science fiction. The successful quantum hardware experiments by Google and others have been a marvel to many who are following these developments. Scott Aaronson has been a leading figure in this area of research and his contributions will continue to focus and guide the field as it reaches its remarkable potential.”
2020 ACM A.M. Turing Award
ACM named Alfred Vaino Aho and Jeffrey David Ullman recipients of the 2020 ACM A.M. Turing Award for fundamental algorithms and theory underlying programming language implementation and for synthesizing these results and those of others in their highly influential books, which educated generations of computer scientists. Aho is the Lawrence Gussman Professor Emeritus of Computer Science at Columbia University. Ullman is the Stanford W. Ascherman Professor Emeritus of Computer Science at Stanford University.
Computer software powers almost every piece of technology with which we interact. Virtually every program running our world—from those on our phones or in our cars to programs running on giant server farms inside big web companies—is written by humans in a higher-level programming language and then compiled into lower-level code for execution. Much of the technology for doing this translation for modern programming languages owes its beginnings to Aho and Ullman.
Beginning with their collaboration at Bell Labs in 1967 and continuing for several decades, Aho and Ullman have shaped the foundations of programming language theory and implementation, as well as algorithm design and analysis. They made broad and fundamental contributions to the field of programming language compilers through their technical contributions and influential textbooks. Their early joint work in algorithm design and analysis techniques contributed crucial approaches to the theoretical core of computer science that emerged during this period.
The ACM A.M. Turing Award, often referred to as the “Nobel Prize of Computing,” carries a $1 million prize, with financial support provided by Google, Inc. It is named for Alan M. Turing, the British mathematician who articulated the mathematical foundation and limits of computing.
“The practice of computer programming and the development of increasingly advanced software systems underpin almost all of the technological transformations we have experienced in society over the last five decades,” explains ACM President Gabriele Kotsis. “While countless researchers and practitioners have contributed to these technologies, the work of Aho and Ullman has been especially influential. They have helped us to understand the theoretical foundations of algorithms and to chart the course for research and practice in compilers and programming language design. Aho and Ullman have been thought leaders since the early 1970s, and their work has guided generations of programmers and researchers up to the present day.”
“Aho and Ullman established bedrock ideas about algorithms, formal languages, compilers and databases, which were instrumental in the development of today’s programming and software landscape,” added Jeff Dean, Google Senior Fellow and SVP, Google AI. “They have also illustrated how these various disciplines are closely interconnected. Aho and Ullman introduced key technical concepts, including specific algorithms, that have been essential. In terms of computer science education, their textbooks have been the gold standard for training students, researchers, and practitioners.”
A Longstanding Collaboration
Aho and Ullman both earned their PhD degrees at Princeton University before joining Bell Labs, where they worked together from 1967 to 1969. During their time at Bell Labs, their early efforts included developing efficient algorithms for analyzing and translating programming languages.
In 1969, Ullman began a career in academia, ultimately joining the faculty at Stanford University, while Aho remained at Bell Labs for 30 years before joining the faculty at Columbia University. Despite working at different institutions, Aho and Ullman continued their collaboration for several decades, during which they co-authored books and papers and introduced novel techniques for algorithms, programming languages, compilers and software systems.
Influential Textbooks
Aho and Ullman co-authored nine influential books (including first and subsequent editions). Two of their most widely celebrated books include:
The Design and Analysis of Computer Algorithms (1974)
Co-authored by Aho, Ullman, and John Hopcroft, this book is considered a classic in the field and was one of the most cited books in computer science research for more than a decade. It became the standard textbook for algorithms courses throughout the world when computer science was still an emerging field. In addition to incorporating their own research contributions to algorithms, The Design and Analysis of Computer Algorithms introduced the random access machine (RAM) as the basic model for analyzing the time and space complexity of computer algorithms using recurrence relations. The RAM model also codified disparate individual algorithms into general design methods. The RAM model and general algorithm design techniques introduced in this book now form an integral part of the standard computer science curriculum.
Principles of Compiler Design (1977)
Co-authored by Aho and Ullman, this definitive book on compiler technology integrated formal language theory and syntax-directed translation techniques into the compiler design process. Often called the “Dragon Book” because of its cover design, it lucidly lays out the phases in translating a high-level programming language to machine code, modularizing the entire enterprise of compiler construction. It includes algorithmic contributions that the authors made to efficient techniques for lexical analysis, syntax analysis techniques, and code generation. The current edition of this book, Compilers: Principles, Techniques and Tools (co-authored with Ravi Sethi and Monica Lam), was published in 2007 and remains the standard textbook on compiler design.
Biographical Background
Alfred Vaino Aho
Alfred Aho is the Lawrence Gussman Professor Emeritus at Columbia University. He joined the Department of Computer Science at Columbia in 1995. Prior to Columbia, Aho was Vice President of Computing Sciences Research at Bell Laboratories where he worked for more than 30 years. A graduate of the University of Toronto, Aho earned his Master’s and PhD degrees in Electrical Engineering/Computer Science from Princeton University.
Aho’s honors include the IEEE John von Neumann Medal and the NEC C&C Foundation C&C Prize. He is a member of the US National Academy of Engineering, the American Academy of Arts and Sciences, and the Royal Society of Canada. He is a Fellow of ACM, IEEE, Bell Labs, and the American Association for the Advancement of Science.
Jeffrey David Ullman
Jeffrey Ullman is the Stanford W. Ascherman Professor Emeritus at Stanford University and CEO of Gradiance Corporation, an online learning platform for various computer science topics. He joined the faculty at Stanford in 1979. Prior to Stanford, he served on the faculty of Princeton University from 1969 to 1979, and was a member of the technical staff at Bell Labs from 1966 to 1969. A graduate of Columbia University, Ullman earned his PhD in Computer Science from Princeton University.
Ullman’s honors include receiving the IEEE John von Neumann Medal, the NEC C&C Foundation C&C Prize, the Donald E. Knuth Prize, and the ACM Karl V. Karlstrom Outstanding Educator Award. He is a member of the US National Academy of Engineering, the National Academy of Sciences, and the American Academy of Arts and Sciences, and is an ACM Fellow.
2020-2021 ACM/CSTA Cutler-Bell Prize
ACM and the Computer Science Teachers Association (CSTA) selected four high school students from among a pool of graduating high school seniors throughout the US for the ACM/CSTA Cutler-Bell Prize in High School Computing. Eligible students applied for the award by submitting a project/artifact that engages modern technology and computer science. A panel of judges selected the recipients based on the ingenuity, complexity, relevancy, and originality of their projects.
The Cutler-Bell Prize promotes the field of computer science and empowers students to pursue computing challenges beyond the traditional classroom environment. In 2015, David Cutler and Gordon Bell established the award. Cutler is a software engineer, designer, and developer of several operating systems at Digital Equipment Corporation. Bell, an electrical engineer, is researcher emeritus at Microsoft Research.
Each Cutler-Bell Prize winner receives a $10,000 cash prize. The prize amount is sent to the financial aid office of the institution the student will be attending next year and is then put toward each student’s tuition or disbursed.
The winning projects illustrate the diverse applications being developed by the next generation of computer scientists.
Sahithi Ankireddy, James B. Conant High School, Hoffman Estates, Illinois
“BEEP... BEEP...BEEP! The jarring noise was accompanied by the neon green waves bouncing up and down every few seconds. Fixated on the heart monitor, I followed the pattern, hoping the 'beep' would continue in order to indicate the survival of the patient—my father.”
Sahithi Ankireddy used the experience of her father’s heart attack to identify ways to detect heart disease faster and easier in those who aren’t deemed “at risk.” Recalling an article she read about the use of artificial intelligence in speeding up the process of diagnosis. In her project, Assistive Heart Disease Diagnostic Tool using Machine Learning and Deep Neural Networks, Ankireddy tested both machine learning models and deep neural networks using a publicly available heart disease database. Through her testing, Ankireddy recognized the Random Forest ML model was the best method for her project. Ankireddy sees her research and assistive heart disease diagnostic tool as helpful in resource-constrained environments. By using this tool, doctors can evaluate more people in less time and provide treatment to patients more quickly. Ankireddy is currently in the process of working with cardiologists to receive feedback on this tool.
Maurice Korish, Rae Kushner Yeshiva High School, Livingston, New Jersey
The United States Census Bureau cites that 9.4 million noninstitutionalized adults have difficulty with at least one daily activity—including eating. While technology exists to support these individuals, it often requires the person using the technology to remain in the same position during the feeding process. Maurice Korish has developed FeedBot to provide independence and a cost-effective solution for disabled people who are unable to properly use their upper limbs. FeedBot implements facial recognition technology to identify the location of an individual’s mouth. This information is then transmitted to a robotic feeding arm, which is also able to be controlled manually with a joystick. Korish has taken advantage of and is building upon open source libraries, and uses Raspberry Pi, to keep this solution low cost. The use of Raspberry Pi also allows for more mobility than a standard computer, providing more comfort and flexibility for the person using FeedBot.
Brian Minnick, Loudoun Valley High School, Purcellville, Virginia
In his project, Controlling a Fully 3D Printed 3D Printer Without Microprocessors, Brian Minnick looks to allow the printer to function without conventional parts. Minnick has created the first fully 3D printed 3D printer to demonstrate self-manufacture, and along with universality, or the ability to make many useful parts, not just duplicates of itself, marks the half-way point in the development of the technologies behind the self-replicating spacecraft. It also contains the first motor controller for a 3D printer that can be built without a microprocessor. Minnick has created this printer as a stepping-stone toward a self-replicating spacecraft.
Emily Yuan, Thomas S. Wootton High School, Rockville, Maryland
In the United States, more than half of violent crimes are not reported. And while most victims of violent crimes seek out medical treatment, the current system they use to report details provides general, unmappable data. Others choose not to share data because of fear. To address these issues, Emily Yuan created Spatial Drilldown, a visual interactive mapping system where users click down on parcels on a map to report incident locations. The goal of this application was to ensure the preservation of privacy. Yuan worked with the CDC research team and nurses from Atlanta Grady Memorial Hospital to test this prototype. Spatial Drilldown provides a novel, interactive technique for collecting crime data, specifically that which can be mapped, and thus, improving the quality of current violence data. Yuan hopes to integrate the application into electronic medical records systems for real use and expand the crime data to help reduce local violence.
“We are proud to support an effort which encourages high school computer science students to develop projects that will advance society,” said Cutler and Bell. “We hope that, whatever careers these students ultimately pursue, they will consider how technology can have a positive impact on the wider world. Beyond challenging the students to stretch their skills and imaginations, developing their own projects gives students confidence.”
"In today's world, computer science is rapidly becoming an essential aptitude for students at all levels and in every area of study," explains ACM President Gabriele Kotsis. "In the coming years, students who have exposure to computer science education in K-12 settings will be at a decided advantage when they enter university or begin their careers. ACM is proud to be a partner with the CSTA in bestowing the Cutler-Bell Prize. Cutler-Bell Prize-winning students are exemplars for their peers. These students demonstrate that they have the vision to use computing as a tool to address pressing problems in society, as well as the technical aptitude to develop a practical plan outlining how they would make their vision a reality. We also congratulate the computer science teachers who guided these students and Cutler and Bell for funding this award."
"Each year, these winning projects showcase the continuing advancements of computer science and the power of high-quality computer science education,” said Jake Baskin, Executive Director of CSTA. “These students and their projects embody CSforGood and it’s inspiring to see how they are leveraging their computer science skills to solve pressing problems. CSTA is proud to honor their work and thanks Gordon Bell and David Cutler for their continued support of the award.”
2021 SIAM/ACM Prize in Computational Science and Engineering
George Karniadakis of Brown University was awarded the 2021 SIAM/ACM Prize in Computer Science and Engineering at the SIAM Conference on Computational Science and Engineering (CSE 2021).
Karniadakis is the Charles Pitts Robinson and John Palmer Barstow Professor of Applied Mathematics and Engineering at Brown University.
The prize honors Karniadakis for advancing spectral elements, reduced-order modeling, uncertainty quantification, dissipative particle dynamics, fractional PDEs, and scientific machine learning, while pushing applications to extreme computational scales and mentoring many leaders.
A Fellow of SIAM, Karniadakis's work has been cited more than 53,500 times.
For more information read the SIAM news release.
2020 ACM Fellows Recognized for Work that Underpins Today’s Computing Innovations
ACM, the Association for Computing Machinery, has named 95 members ACM Fellows for wide-ranging and fundamental contributions in areas including artificial intelligence, cloud computing, computer graphics, computational biology, data science, human-computer interaction, software engineering, theoretical computer science, and virtual reality, among other areas. The accomplishments of the 2020 ACM Fellows have driven innovations that ushered in significant improvements across many areas of technology, indus.try, and personal life.
The ACM Fellows program recognizes the top 1% of ACM Members for their outstanding accomplishments in computing and information technology and/or outstanding service to ACM and the larger computing community. Fellows are nominated by their peers, with nominations reviewed by a distinguished selection committee.
"This year our task in selecting the 2020 Fellows was a little more challenging, as we had a record number of nominations from around the world,” explained ACM President Gabriele Kotsis. “The 2020 ACM Fellows have demonstrated excellence across many disciplines of computing. These men and women have made pivotal contributions to technologies that are transforming whole industries, as well as our personal lives. We fully expect that these new ACM Fellows will continue in the vanguard in their respective fields."
Underscoring ACM’s global reach, the 2020 Fellows represent universities, corporations and research centers in Australia, Austria, Canada, China, Germany, Israel, Japan, The Netherlands, South Korea, Spain, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States.
The contributions of the 2020 Fellows run the gamut of the computing field―including algorithms, networks, computer architecture, robotics, distributed systems, software development, wireless systems, and web science―to name a few.
Additional information about the 2020 ACM Fellows, as well as previously named ACM Fellows, is available through the ACM Fellows site.
ACM Recognizes 2020 Distinguished Members for Contributions that Propel the Digital Age
ACM has named 64 Distinguished Members for outstanding contributions to the field. All 2020 inductees are longstanding ACM members and were selected by their peers for a range of accomplishments that have contributed to technologies that move the computing field forward.
"The active participation of ACM members, in our organization, and in the field more broadly, is the foundation of a global scientific society,” explains ACM President Gabriele Kotsis. “With the Distinguished Member designation, ACM celebrates specific contributions of these members and their career growth as reflected in a long-term commitment to the field, as well as their collaboration with peers in supporting a global professional association for the benefit of all."
The 2020 ACM Distinguished Members work at leading universities, corporations and research institutions in Australia, Canada, China, India, Qatar, Singapore, Spain, Sweden, Taiwan, the United Kingdom and the United States. These innovators have made contributions in a wide range of technical areas including data science, mobile and pervasive computing, artificial intelligence, computer science education, computer engineering, graphics, cybersecurity, and networking, among many other areas.
The ACM Distinguished Member program recognizes up to 10 percent of ACM worldwide membership based on professional experience as well as significant achievements in the computing field. To be nominated, a candidate must have at least 15 years of professional experience in the computing field, five years of professional ACM membership in the last 10 years, and have achieved a significant level of accomplishment, or made a significant impact in the field of computing, computer science and/or information technology. In addition, it is expected that a Distinguished Member serves as a mentor and role model, guiding technical career development and contributing to the field beyond the norm.
2020 ACM Gordon Bell Prize Awarded to Team for Machine Learning Method that Achieves Record Molecular Dynamics Simulation
ACM, the Association for Computing Machinery, named a nine-member team, drawn from Chinese and American institutions, recipients of the 2020 ACM Gordon Bell Prize for their project, “Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning.”
Winning team members include Weile Jia, University of California, Berkeley; Han Wang, Institute of Applied Physics and Computational Mathematics (Beijing, China); Mohan Chen, Peking University; Denghui Lu, Peking University; Lin Lin, University of California, Berkeley and Lawrence Berkeley National Laboratory; Roberto Car, Princeton University; Weinan E, Princeton University; and Linfeng Zhang, Princeton University.
The famed physicist Richard Feynman once said, “If we were to name the most powerful assumption of all, which leads one on and on to an attempt to understand life, it is that all things are made of atoms, and that everything that living things do can be understood in terms of the jiggling and wiggling of atoms.” Molecular dynamics (MD) is a computer simulation method that analyzes how atoms and molecules move and interact during a fixed period of time. MD simulations allow scientists to gain a better sense of how a system (which could include anything from a single cell to a cloud of gas) progresses over time. Practical applications of molecular dynamics include studying large molecules such as proteins for drug development.
Ab initio (meaning in Latin “from the beginning” or “from first principles”) Molecular Dynamics (AIMD) is an approach that differs slightly from Standard Molecular Dynamics (SMD) in how interatomic forces are calculated during the simulation. The level of precision that can be gained through AIMD has made it the preferred simulation method of scientists for more than 35 years. At the same time, while AIMD allows for greater accuracy, the approach requires more computation—and has therefore been limited to the study of small-sized systems (systems that have a maximum size of thousands of atoms).
In their Gordon Bell Prize-winning paper, the team introduced Deep Potential Molecular Dynamics (DPMD). DPMD is a new machine learning-based protocol that can simulate a more than 1 nanosecond-long trajectory of over 100 million atoms per day. While other machine learning-based protocols have been introduced for MD simulations in recent years, the authors contend that their protocol achieves the first efficient MD simulation of 100 million atoms with ab initio accuracy.
As the Gordon Bell Prize recognizes achievement in high performance computing, finalists must demonstrate that their proposed algorithm can scale (run efficiently) on the world’s most powerful supercomputers. The team developed a highly optimized code (GPU Deep MD-Kit), which they successfully ran on the Summit supercomputer. The team’s GPU Deep MD-Kit efficiently scaled up to the entire Summit supercomputer, attaining 91 PFLOPS (1 PFLOP = 1 quadrillion floating operation points per second) in double precision (45.5% of the peak) and 162/275 PFLOPS in mixed-single/half precision.
The Summit supercomputer, developed by IBM for the (US) Oak Ridge National Laboratory, was the first supercomputer to reach exaflop speed (1 quintillion operations per second), and was the world’s fastest supercomputer from November 2018 to June 2020.
In the abstract of their paper, the Gordon Bell Prize winning team wrote, “The great accomplishment of this work is that it opens the door to simulating unprecedented size and time scales with ab initio accuracy. It also poses new challenges to the next-generation supercomputer for a better integration of machine learning and physical modeling.”
The award was presented by ACM President Gabriele Kotsis and Bronis de Supinski, Chair of the 2020 Gordon Bell Prize Award Committee, during the International Conference for High Performance Computing, Networking, Storage and Analysis (SC20), which was held virtually for the first time.
Vivek Sarkar Recognized with ACM-IEEE CS Ken Kennedy Award
The Association for Computing Machinery (ACM) and IEEE Computer Society IEEE-CS) named Vivek Sarkar of the Georgia Institute of Technology as the recipient of the 2020 ACM-IEEE CS Ken Kennedy Award. Sarkar is recognized for "foundational technical contributions to the area of programmability and productivity in parallel computing, as well as leadership contributions to professional service, mentoring, and teaching."
The Kennedy Award recognizes Sarkar’s leadership in several areas. Sarkar has made foundational technical contributions to programmability and productivity in parallel computing, and has developed innovative programming-model, compiler, and runtime technologies for parallel computing that have influenced other researchers, as well as industry products and standards. Sarkar has led open source software projects that have had significant impact on the research community, he has created new pedagogic materials to make parallel programming more accessible to undergraduate students using the Coursera learner community, and has mentored junior colleagues at IBM and several PhD students after moving to academia. He has also demonstrated leadership in community service by serving as program chair and general chair for major conferences in his research area, serving on US Department of Energy’s Advanced Scientific Computing Advisory Committee (ASCAC) advisory committee since 2009, and on the Computing Research Association (CRA) Board of Directors since 2015.
ACM and the IEEE Computer Society co-sponsor the Kennedy Award, which was established in 2009 to recognize substantial contributions to programmability and productivity in computing and significant community service or mentoring contributions. It was named for the late Ken Kennedy, founder of Rice University’s computer science program and a world expert on high performance computing. The Kennedy Award carries a $5,000 honorarium endowed by IEEE-CS and ACM.
2020 ACM-IEEE CS George Michael Memorial HPC Fellowships
Kazem Cheshmi of the University of Toronto, Madhurima Vardhan Duke University, and Keren Zhou of Rice University are the recipients of the 2020 ACM-IEEE CS George Michael Memorial HPC Fellowships. Cheshmi is recognized for his work building a Sympiler that automatically generates efficient parallel code for sparse scientific applications on supercomputers. Vardhan is recognized for her work developing a memory-light massively parallel computational fluid dynamic algorithm using routine clinical data to enable high-fidelity simulations at ultrahigh resolutions. Zhou is recognized for his work developing performance tools for GPU-accelerated applications. The Fellowships are jointly presented by ACM and the IEEE Computer Society.
Kazem Cheshmi
In mathematics, a matrix is a grid (represented in a table of rows and columns) that is used to store, track and manipulate various kinds of data. In computer science, matrices are especially used in graphics, where an image is represented as a matrix in which each datapoint on the matrix table would directly correspond to the color and/or intensity of a given pixel. Matrix computations have a wide range of practical uses. For example, a 3D graphics programmer would hold all the datapoints related to an image as elements of the matrix and might make matrix computations to cause the image to rotate or scale. Matrix computations also play an essential role in computer vision, a branch of AI in which a computer learns to identify an image.
Historically, mathematicians would develop algorithms for matrix computations, and software engineers would write programs to make the algorithms run on powerful parallel computers. However, the emergence of massive datasets has meant that traditional approaches to matrix computation are often inadequate for the enormous matrices, requiring complex algorithms that are increasingly used today in areas such as data analytics, machine learning, and high performance computing.
To address this problem, Cheshmi has developed Sympiler, a domain-specific compiler (a program that translates the source code from a programming language to a code the computer can understand). Cheshmi’s Sympiler generates high performance codes for sparse numerical methods and can process complex matrix computations derived from massive datasets. Sympiler is extended to nonlinear optimization algorithms and performs faster than existing nonlinear optimization tools and is scalable to some of the most powerful high performance computers. Cheshmi’s work was also accepted to SIGGRAPH 2020, where he demonstrated how he is using Sympiler in robotics and graphics applications.
Madhurima Vardhan
Despite recent advances, cardiovascular disease (CVD) remains the leading cause of deaths worldwide. In the field of high performance computing, some researchers develop algorithms that are processed on powerful supercomputers to create visual simulations of complex biological processes. These simulations can be useful tools to help researchers better understand how to treat disease. Currently, a form of simulation called a computational fluid dynamic (CFD) simulation is used in health clinics to provide noninvasive diagnosis of CVDs.
However, existing state-of-the-art CFD simulations do not provide high-fidelity real-time diagnosis of CVDs. These limitations stem from a variety of factors, including problems with model accuracy based on the patient images that comprise the datasets; the extensive memory requirements of these kinds of simulations; the long runtimes on high performance computers that are required for these kinds of simulations; and teaching physicians how to effectively use these simulations.
To address these problems, Vardhan is developing a new kind CFD algorithm using routine patient image datasets that can develop high-fidelity simulations at ultra-high resolutions. Her algorithm is memory-light (that is, using less memory than existing algorithms), and massively parallel (proven to scale on supercomputers). As part of her PhD work, she also completed a study to determine how physicians interact with simulation data, and how physician behavior might be modified in treatment planning.
Keren Zhou
In the last 10 years, graphics processing units (GPUs) have become a critical component in high performance computing systems. For example, five of the top 10 supercomputers in the world today use GPUs to accelerate the performance of applications in various domains. These systems must be designed to avoid common GPU performance problems, and identifying specific performance problems can be challenging.
Working with his advisor John Mellor-Crummey and others, Zhou has taken the lead in developing performance tools for GPU-accelerated supercomputing to help programmers detect program inefficiencies and provide optimization advice.
Their work has already been well received in academia and industry. Zhou and his colleagues have published three papers in top-tier conference proceedings. They are also collaborating with GPU vendors, including AMD, Intel, and NVIDIA; they have submitted a collection of bug reports and offered advice about how to improve their GPU hardware and software measurement interfaces.
About the ACM-IEEE CS George Michael Memorial HPC Fellowship
The ACM-IEEE CS George Michael Memorial HPC Fellowship is endowed in memory of George Michael, one of the founding fathers of the SC Conference series. The fellowship honors exceptional PhD students throughout the world whose research focus is on high performance computing applications, networking, storage or large-scale data analytics using the most powerful computers that are currently available. The Fellowship includes a $5,000 honorarium and is presented at SC20, which is being held virtually this year.
2019 ACM Doctoral Dissertation Award
Dor Minzer of Tel Aviv University is the recipient of the 2019 ACM Doctoral Dissertation Award for his dissertation, “On Monotonicity Testing and the 2-to-2-Games Conjecture.” Honorable Mentions go to Jakub Tarnawski of École polytechnique fédérale de Lausanne (EPFL) and JiaJun Wu of Massachusetts Institute of Technology.
Dor Minzer's dissertation, “On Monotonicity Testing and the 2-to-2-Games Conjecture,” settles the complexity of testing monotonicity of Boolean functions and makes a significant advance toward resolving the Unique Games Conjecture, one of the most central problems in approximation algorithms and complexity theory.
Property-testers are extremely efficient randomized algorithms that check whether an object satisfies a certain property, when the data is too large to examine. For example, one may want to check that the distance between any two computers in the internet network does not exceed a given bound. In the first part of his thesis, Minzer settled a famous open problem in the field by introducing an optimal tester that checks whether a given Boolean function (voting scheme) is monotonic.
The holy grail of complexity theory is to classify computational problems to those that are feasible and those that are infeasible. The PCP theorem (for probabilistically checkable proofs) establishes the framework that enables classifying approximation problems as infeasible, showing they are NP-hard. In 2002, Subhash Khot proposed the Unique Games Conjecture (UGC), asserting that a very strong version of the PCP theorem should still hold. The conjecture has inspired a flurry of research and has had far-reaching implications. If proven true, the conjecture would explain the complexity of a whole family of algorithmic problems. In contrast to other conjectures, UGC has been controversial, splitting the community into believers and skeptics. While progress toward validating the conjecture has stalled, evidence against it had been piling up, involving new algorithmic techniques.
In the second part of his dissertation, Minzer went halfway toward establishing the conjecture, and in the process nullified the strongest known evidence against UGC. Even if UGC is not resolved in the immediate future, Minzer’s dissertation makes significant advances toward solving research problems that have previously appeared out of reach.
Minzer is a postdoctoral researcher at the Institute for Advanced Study (IAS) in Princeton, New Jersey, and will be joining MIT as an Assistant Professor in the fall of 2020. His main research interests are in computational complexity theory, PCP, and analysis of Boolean functions. Minzer received a BA in Mathematics, as well as an MSc and PhD in Computer Science from Tel Aviv University.
2019 ACM Policy Award
Barbara Simons was named the recipient of the 2019 ACM Policy Award for long-standing, high-impact leadership as ACM President and founding Chair of ACM's US Public Policy Committee (USACM), while making influential contributions to improve the reliability of and public confidence in election technology. Over several decades, Simons has advanced technology policy by founding and leading organizations, authoring influential publications, and effecting change through lobbying and public education.
Twenty-six years ago, Barbara Simons founded USACM to address emerging public policy issues around technology, and led the committee for nine years. She worked to build ACM’s policy activities and pioneered bridging the technical expertise of computer scientists with the policymaking of the US government.
Simons recruited an interdisciplinary team for USACM, the forerunner of today’s US Technology Policy Committee (USTPC), ranging from computer scientists and industry leaders to lawyers and experts in public policy. Now part of ACM’s Technology Policy Council (TPC), which serves global regions, the TPC groups have continued Simons’ original vision for ACM: to provide cogent advice and analysis to legislators and policymakers about a wide range of issues including cryptography, computer security, privacy, and intellectual property.
Simons is internationally known as an expert on voting technology, an advocate for auditable paper-based voting systems, and author of numerous papers on secure election technology. Through her publications, reports, testimony to the US Congress, and advocacy, Simons has been a key player in persuading election officials to shift to paper-based voting systems, and has contributed to proposals for reforms in election technologies, including post-election ballot audits. Broken Ballots: Will Your Vote Count?, the 2012 book Simons co-authored with Douglas Jones, is regarded as the best available analysis of the risks of using computing technology in voting.
Simons served as ACM President from 1998 – 2000. In 2001, she served on President Clinton’s Export Council’s Subcommittee on Encryption and the National Workshop on Internet Voting, which conducted one of the first studies of internet voting.
Since 2008, Simons has served as one of two US Senate appointees to the Board of Advisors of the US Election Assistance Commission (EAC), and she was named Chair of the Board of Advisors subcommittee on election security in 2019. She currently also chairs the Board of Directors of Verified Voting, a nonpartisan nonprofit organization that advocates for legislation and regulation that promotes accuracy, transparency and verifiability of elections. She remains active with ACM as a member of the global Technology Policy Council and as Co-chair of USTPC‘s Voting subcommittee.
Simons is the only woman to have received the Distinguished Engineering Alumni Award from the College of Engineering of the University of California, Berkeley, where she earned her PhD in Computer Science. Taking a nontraditional path to her degree after returning to school as a single mother, she was a co-founder of the University of California Computer Science Department Reentry Program for Women and Minorities. She then worked as a computer scientist for IBM’s Research Division for nearly two decades. She is a Fellow of ACM and the American Association for the Advancement of Science. Simons received the Computing Research Association Distinguished Service Award, the Electronic Frontier Foundation Pioneer Award, the ACM Outstanding Contribution Award, and the Computer Professionals for Social Responsibility Norbert Wiener Award.
2020 ACM - IEEE CS Eckert-Mauchly Award
ACM and IEEE Computer Society named Luiz André Barroso, Vice President of Engineering at Google, recipient of the 2020 Eckert-Mauchly Award for pioneering the design of warehouse-scale computing and driving it from concept to industry. Today’s datacenters contain hundreds of thousands of servers and millions of disk drives, and make possible the most prevalent applications used by the public today, including cloud computing, powerful search engines, and internet services.
Barroso is widely recognized as the foremost architect of the design of these new ultra-scale datacenters. The cornerstone of his architectural vision was to think of a system holistically, weaving together the individual compute, storage, and networking components into an overall design across large-scale distributed systems.
Barroso has been a thought leader in the field, writing seminal papers and books which reconsidered every aspect of data center and system design. At the same time, he has also guided industry efforts in this area. He was the lead architect of Google’s first custom-built data centers and has been the primary technical leader steering the development of Google’s computing infrastructure for much of the last two decades. This work has been replicated by other large companies. Virtually all the hardware architectures that power today’s internet services and cloud computing systems feature elements introduced by Barroso and his team at Google.
Warehouse-scale computing
Barroso proposed the idea that a datacenter should be designed as a single, massive warehouse-scale computer, popularizing the phrase “the datacenter is the computer.” The workloads of these computers are internet services that run on thousands of CPUs across high-bandwidth networks and require specialized storage systems. Barroso’s designs paired inexpensive hardware with powerful distributed systems software to dramatically change system design. When Barroso’s designs were introduced in the mid-2000s, they garnered a new term: “hyperscale datacenters.” Those designs were attractive not only because they could manage the mushrooming workloads from internet services and cloud computing, but because they also reduced hardware and operating costs. By 2022, the hyperscale datacenter market is expected to grow to more than $80 billion annually.
Hyperscale system architecture
Barroso and his colleagues at Google were the first to abandon traditional server products and work directly with commodity component manufacturers to build low-end servers that were specifically optimized for the efficiency and scalability needs of internet services. In his well-cited IEEE Micro paper, “Web Search for a Planet,” he and his co-authors Jeffrey Dean and Urs Hölzle described the hardware requirements for emerging web services, arguing for designs that used modular hardware coupled with simple robust software. This approach helped dramatically drive down complexity to make systems less expensive to buy and build, easier to maintain, and more adaptable to rapidly-changing workloads.
Energy efficiency
In one of his most influential papers, which has been cited more than 2,300 times, “The Case for Energy-Proportional Computing,” Barroso (with co-author Urs Hölzle) called for a new approach to achieving energy efficiency, where the energy used would be roughly proportional to the utilization of the systems in question. The paper’s key ideas resulted in significant energy efficiencies when computers were operating below peak capacity. It has been documented that standard servers circa 2006 used 70% peak power even when nearly idle, whereas since 2012, after Barroso’s ideas on energy proportionality had been implemented throughout the industry, a standard server consumed only a small fraction of its peak power at idle.
Other key contributions by Barroso include co-leading the Piranha chip project at DEC Western Research. Piranha was one of the first multicore processor architectures proposing multiple “wimpy” cores, and many of Piranha’s designs have since been adopted in today’s commercial processors. Barroso’s book, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, (co-authored with Urs Hölzle and Parthasarathy Ranganathan) is widely accepted as the authoritative textbook in the field.
Barroso will be formally recognized with the ACM-IEEE CS Eckert-Mauchly Award during the ACM/IEEE International Symposium on Computer Architecture (ISCA), which is being held virtually May 29 – June 3, 2020.
ACM and IEEE Computer Society co-sponsor the Eckert-Mauchly Award, which was initiated in 1979. It recognizes contributions to computer and digital systems architecture and comes with a $5,000 prize. The award was named for John Presper Eckert and John William Mauchly, who collaborated on the design and construction of the Electronic Numerical Integrator and Computer (ENIAC), the pioneering large-scale electronic computing machine, which was completed in 1947.
2019 ACM Paris Kanellakis Theory and Practice Award
ACM has named Noga Alon of Princeton University and Tel Aviv University; Phillip Gibbons of Carnegie Mellon University; Yossi Matias of Google and Tel Aviv University; and Mario Szegedy of Rutgers University recipients of the ACM Paris Kanellakis Theory and Practice Award for seminal work on the foundations of streaming algorithms and their application to large-scale data analytics.
Alon, Gibbons, Matias and Szegedy pioneered a framework for algorithmic treatment of streaming massive datasets. Today, their sketching and streaming algorithms remain the core approach for streaming big data and constitute an entire subarea of the field of algorithms. Additionally, the concepts of sketches and synopses that they introduced are now routinely used in a variety of data analysis tasks in databases, network monitoring, usage analytics in internet products, natural language processing and machine learning.
In their seminal paper, “The Space Complexity of Approximating the Frequency Moments,” Alon, Matias and Szegedy laid the foundations of the analysis of data streams using limited memory. Follow-up papers, including “Tracking Join and Self-join Sizes in Limited Storage,” by Alon, Gibbons, Matias, and Szegedy, and “New Sampling-Based Summary Statistics for Improving Approximate Query Answers,” by Gibbons and Matias, expanded on the idea of data synopses and were instrumental in the development of the burgeoning fields of streaming and sketching algorithms. This work has been applied to query planning and processing in databases and the design of small synopses to monitor vast quantities of data generated in networks.
2019 ACM - AAAI Allen Newell Award
ACM has named Lydia E. Kavraki of Rice University and Daphne Koller of Stanford University and Insitro recipients of the ACM - AAAI Allen Newell Award.
Lydia Kavraki is recognized for pioneering contributions to robotic motion planning, including the invention of randomized motion planning algorithms and probabilistic roadmaps, with applications to bioinformatics and biomedicine.
Kavraki conducted foundational work on physical algorithms and developed efficient high-dimensional search frameworks that impacted robotics (motion planning, hybrid systems, formal methods in robotics, assembly planning, and micro- and flexible manipulation), as well as computational structural biology, translational bioinformatics, and biomedical informatics.
Kavraki has authored more than 240 peer-reviewed publications and is a co-author of the widely used robotics textbook, Principles of Robot Motion. Her seminal paper, “Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces,” (with Svestka, Latombe and Overmars) was the first to establish a probabilistic approach to developing roadmaps for high-dimensional spaces, which has become one of the key techniques for motion planning for complex physical systems.
Kavraki’s contributions go beyond robotics to address problems underlying the functional annotation of proteins, the understanding of metabolic networks, and the investigation of molecular conformations and protein flexibility. She has contributed to problems that involve reasoning about the three-dimensional structure of biomolecules and their ability to interact with other biomolecules primarily for drug design and, more recently, for personalized cancer immunotherapy.
Daphne Koller is recognized for seminal contributions to machine learning and probabilistic models, the application of these techniques to biology and human health, and for contributions to democratizing education.
Koller was a leader in the development and use of graphical models, including learning the model structure as well as its parameters, and pioneered the unification of statistical learning and relational modelling languages. She also developed foundational methods for inference and learning in temporal models. Her textbook (with Nir Friedman), Probabilistic Graphical Models, is the definitive text in this area.
As an early leader in bringing machine learning methods to the life sciences, she developed Module Networks, wherein she and her colleagues harnessed modularity in gene regulatory programs to build an effective model of gene activity. She has developed groundbreaking applications of machine learning to pathology, work that not only demonstrated the ability of machine learning to outperform human pathologists, but also was one of the first to highlight the importance of the stromal tissue in cancer prognosis (now well-recognized).
Koller is also the co-founder and former co-CEO of Coursera, a platform offering free education from top universities to people worldwide. Coursera, now in its eighth year, has touched the lives of over 50 million learners in every country in the world. Koller is currently the founder and CEO of Insitro, a biotech startup that works to discover better medicines through the integration of machine learning and biology at scale.
2019 ACM Software System Award
ACM named Paul Mockapetris recipient of the ACM Software System Award for development of the Domain Name System (DNS), which provides the worldwide distributed directory service that is an essential component of the functionality of the global internet.
When the internet was first deployed in the early 1980s, the online community relied on a centrally-managed directory that matched human-friendly host names to numerical IP addresses of computers on the network. As the internet began to grow more rapidly, maintaining a single centralized host directory became slow and unwieldy, necessitating a new scalable architecture. To address this need, in 1983, Mockapetris designed and built the Domain Name System (DNS), creating the associated query protocol, a server implementation, and initial root servers. Taken together, these components provided the first stable operational DNS system.
When Mockapetris initially designed the DNS, the number of name lookups to establish the associated IP address were in the few thousands per day. Today, while still employing the core components that Mockapetris introduced 37 years ago, the DNS manages 350 million separately-managed domains, and responds to several tens of billions of queries each day.
DNS serves as a foundation for dozens of other applications, including email and web addresses. The Universal Resource Locator (URL) and Universal Resource Identifier (URI)—core components the World Wide Web—rely on domain names as introduced in the DNS system. While many of the new features of the DNS have been added by others, the ability of Mockapetris’s original design to incorporate these updates is a testament to his work.
2019 ACM Distinguished Service Award
Michael Ley was named recipient of the ACM Distinguished Service Award for creating, developing, and curating DBLP, an extraordinarily useful and influential online bibliographic resource that has changed the way computer scientists work.
Until the early 1990s, finding relevant literature and compiling the bibliographic references for a paper or a dissertation was a manual and tedious effort for students and authors. Ley, of the University of Trier and Schloss Dagstuhl − Leibniz Center for Informatics, created DBLP in 1993 to cover proceedings and journals from the fields of database systems and logic programming (from which the acronym “DBLP” arose). The author pages provided links to co-authors and corresponding table-of-contents entries, forming a browsable person-publication network. After positive feedback from the database community, Ley added data from further computer science disciplines.
Today, DBLP lists more than 5 million publications and is used to search for bibliographic entries (its original intent), as well as to evaluate persons or institutions, and to support program committee chairs, editors, and reviewers. Strengths of DBLP include the quality of its data, which results in a very low rate of errors, as well as the unique identification of authors. DBLP has changed the way computer scientists use bibliographic data and has become an invaluable asset for virtually every researcher in the field.
During the 1990s and 2000s, DBLP was largely a one-man endeavor. In the last decade, Ley organized a DBLP team at Schloss Dagstuhl − Leibniz Center for Informatics. Through DBLP, Ley has made the enormous body of published computer science research more accessible and useful to the entire community.
2019 ACM Karl V. Karlstrom Outstanding Educator Award
Mordechai (Moti) Ben-Ari was named recipient of the Karl V. Karlstrom Outstanding Educator Award for his pioneering textbooks, software tools and research on learning concurrent programming, program visualization, logic, and programming languages, spanning four decades and aimed at both novices and advanced students in several subfields of computing.
Ben-Ari, a professor at the Weizmann Institute of Science in Israel, has authored 15 well-known and widely-used textbooks on topics including concurrent and distributed programming, programming languages, model checking, and mathematical logic. Many of these books are the definitive textbooks in their respective areas, and several have been translated into many languages.
In addition to his textbooks, Ben-Ari has developed several open source software tools for teaching computer science. The tools he developed and co-developed for teaching various subject areas include: for distributed and concurrent programming (DAJ, Jbaci); for model checking (JSpin and EriGone); for program visualization (the Jeliot animation tool); and for SAT solving (LearnSAT).
Ben-Ari has also been a leader in the area of computer science education theory, having written seminal research papers on constructivism and situated learning. Demonstrating his broad range of interests, he recently co-authored (with Francesco Mondada) Elements of Robotics, an open source textbook for high school students. Ben-Ari’s work has helped to educate and inspire generations of students in computer science.
2019 Outstanding Contribution to ACM Award
Arati Dixit was named recipient of the Outstanding Contribution to ACM Award for contributing to the growth and diversity of ACM programs in India, especially ACM-W India.
Dixit is currently a Senior Scientist at Applied Research Associates, Inc. in Raleigh, North Carolina, as well as a Teaching Associate Professor in the ECE department at North Carolina State University. Dixit has been an active member of ACM-W India, an initiative that focuses on the empowerment of women, for many years. In 2013, she was involved in launching the first ACM-W Celebration of Women in Computing event in Pune. ACM-W Celebrations are events that are designed to build a sense of community among women in computing and can include anything from a technical session, to a graduate panel, to a career fair. When she became Chair of ACM-W India in 2017, Dixit expanded the number of ACM-W celebrations to eight diverse regions of the country in both rural and metropolitan settings. She also championed the creation of an annual ACM-W India hackathon.
In 2017, when the broader ACM India Council initiated a program of summer schools across the country to encourage undergraduate students to take up graduate studies, Dixit proposed the idea of having one of the schools dedicated exclusively to women. Dixit organized the first school in Pune in 2017, and an additional summer school was added in Bengaluru in 2018. These women-only summer schools were a success and the model has been repeated. The number of ACM-W chapters across India also grew during Dixit’s tenure. When she stepped down as Chair at the end of 2019, there were 35 active ACM-W student chapters and three ACM-W professional chapters in the country.
Dixit’s other prominent public contribution to ACM was her work as the founding Vice Chair of the ACM India Special Interest Group on Computer Science Education (iSIGCSE), in which she made tireless efforts to promote ACM curriculum implementation across India. As an ACM India Eminent Speaker, she has delivered more than 50 talks on diverse topics. She has been especially active with her local ACM professional chapter in Pune, having served as Chair, Vice Chair, and Secretary/Treasurer.
2020-2021 ACM Athena Lecturer
ACM has named Sarit Kraus of Bar-Ilan University the 2020-2021 ACM Athena Lecturer for foundational contributions to artificial intelligence, notably to multi-agent systems, human-agent interaction, autonomous agents and nonmonotonic reasoning, and exemplary service and leadership in these fields. Her contributions span theoretical foundations, experimental evaluation, and practical applications. Multi-agent systems are regarded as vital to the increasingly complex challenges within artificial intelligence and have broad applications in a number of areas.
Kraus is recognized as one of the world’s leading researchers in multi-agent systems, in which a distributed group of agents (computers, robots, and/or humans) interact and work collaboratively to solve problems. Beyond her work in multi-agent systems, Kraus has made significant contributions to knowledge representation (another area of artificial intelligence research) by incorporating nonmonotonic reasoning, and to randomized policies for security applications by combining methods from game theory, machine learning and optimization. Kraus is also recognized for her service to the field as an outstanding educator and mentor, as well as for her conference, editorial, and leadership roles.
Initiated in 2006, the ACM Athena Lecturer Award celebrates women researchers who have made fundamental contributions to computer science. The award carries a cash prize of $25,000, with financial support provided by Two Sigma. The Athena Lecturer gives an invited talk at a major ACM conference of her choice.
“Each year, it is ACM’s honor to put a spotlight on the instrumental role that women play in the computing field by selecting an Athena Lecturer,” said ACM President Cherri M. Pancake. “The ability of multi-agent systems to effectively work together is at the core of AI research and will be the lynchpin of many of the technologies that will shape the future. With seminal work in AI stretching back to the early 1990s, it is fair to say that Sarit Kraus has introduced new ways of thinking in multi-agent systems research, while also shepherding research ideas into practical applications. Her colleagues also cite her generosity and sensitivity in mentoring the next generation of researchers, which aligns perfectly with our mission in bestowing this particular award.”
Multi-agent Systems
In a multi-agent system (MAS), a distributed network of agents (which could include computers or humans) work together to solve a problem that is beyond the capacity of a single agent. For example, if two autonomous vehicles were approaching an intersection, the software systems (agents) in each vehicle would communicate with each other via sensors, and perhaps a central computer coordinating traffic in the neighborhood in order to ensure the vehicles would not collide. Multi-agent systems are increasingly used in a wide range of areas, from Internet of Things (IoT) applications like smart cities, supply-chain management, smart electric grids, robotics, and online trading to many mobile computing services.
The focus of Kraus’s research in multi-agent systems has been to develop intelligent agents that can interact proficiently with each other and with people, in both cooperative and conflicting scenarios. As with other areas of AI, this work requires an understanding of human behavior and decision-making in order to develop models for how the agents will make decisions. Toward this goal, Kraus developed innovative methods combining machine learning techniques for human modeling, formal decision-making and game theory approaches to enable agents to interact well with people. In a series of seminal papers, Kraus developed formal models of agent interaction that have been used in several practical applications including the ARMOR project, which combines game theory and optimization methods to improve robotics security at venues such as the Los Angeles International Airport; the Sheba Project, which deploys machine-learning techniques to facilitated training and rehabilitation (including speech therapy) at hospitals in Israel; developing a virtual suspect, integrating psychological models and machine learning, to enhance law enforcement training; recommendation systems for smart cars; and developing an automated mediator for use in studies on the influence of different mediation types on intra- and inter-country negotiations.
Kraus’s work in multi-agent systems also includes the shared plans framework for collaborative planning and acting, models of coalition formation, automated negotiation, and culture-sensitive agents. For example, her 1996 paper, co-authored with Barbara Grosz, “Collaborative plans for complex group action,” provided a framework for investigating fundamental questions about how agents collaborate and has been especially influential in the development of MAS research, having been cited nearly 1,400 times.
Automated Negotiation
Kraus is recognized as a world leader in a subfield of multi-agent systems called automated negotiation, in which the goal is to build computers that can reach agreements with other computers, negotiate on behalf of humans, or perhaps do a better job than human negotiators. Automated negotiation systems are designed to operate without any human intervention. Automated negotiation especially comes into play in economic domains and has garnered increasing interest with the rise of e-commerce applications. As with her broader work within multi-agent systems, Kraus designed models and protocols for automated negotiation algorithms that she introduced in dozens of seminal papers stretching back to the early 1990s. Kraus is a co-author (with Michael Wooldridge and Shaheen Fatima) of the book Principles of Automated Negotiation, a state-of-the-art treatment of the subject.
Nonmonotonic Reasoning
In designing artificially intelligent systems, researchers seek to simulate the logic humans use to make assumptions about the world, even in the face of incomplete or new information. In the traditional example, if a human is told that an animal is a bird, the human will logically assume that it can fly. However, when the human is informed that the bird is a penguin, which cannot fly, the human must adjust his/her logic to allow for potential exceptions to the general rule “all birds fly.” In artificial intelligence, nonmonotonic reasoning refers to the ability of a system to take back conclusions when initial assumptions were incorrect and/or new information is given. Nonmonotonic systems are also designed to reach new/alternative conclusions in these instances. Kraus was the lead author (with Daniel Lehmann and Menachem Magidor) of the landmark 1990 paper “Non-monotonic Reasoning, Preferential Models and Cumulative Logics,” which has been recognized as a highly useful attempt to provide theoretical foundations for nonmonotonic logic that could be used in AI systems. Kraus’s subsequent publications in nonmonotonic logic have shaped the development of this important subfield of AI and opened up new lines of research.
Service to the Field and Mentoring
Over the years, Kraus has served the research community by taking on many volunteer roles. She has been a General, Program or Workshop Chair for several leading AI conferences including IJCAI, ICMAS, AAMAS, and ECAI. Currently, she is serving on the editorial boards of the Journal of Artificial Intelligence Research, Journal of Autonomous Agents and Multi-agent Systems, and Annals of Maths & AI. As an educator and mentor, she has supervised 62 Master’s students and 34 PhD students. In the spirit of the ACM Athena Lecturer Award, Kraus is also a recognized leader in efforts to increase the participation of women in science.
Biographical Background
Sarit Kraus is a Professor of Computer Science at Bar-Ilan University in Ramat Gan, Israel, where her research is focused on intelligent agents and multi-agent systems. She received her Bachelor’s, Master’s and PhD degrees from The Hebrew University of Jerusalem.
Kraus has written six books, 122 journal articles, and 176 conference papers, and has received nine patents. Twelve of her publications have won best paper awards and two have won the IFAAMAS Influential Paper Award. She is a Fellow of ACM, the European Association for Artificial Intelligence (EurAI), and the Association for the Advancement of Artificial Intelligence (AAAI). Her honors include receiving the IJCAI Computers and Thought Award in 1995, the ACM SIGART Autonomous Agents Research Award in 2007, and the prestigious Israel EMET Prize in 2010.
2019 ACM Grace Murray Hopper Award
ACM named Maria Florina “Nina” Balcan of Carnegie Mellon University the recipient of the 2019 ACM Grace Murray Hopper Award for foundational and breakthrough contributions to minimally-supervised learning. Balcan’s influential and pioneering work in machine learning has solved longstanding open problems, enabled entire lines of research crucial for modern AI systems, and has set the agenda for the field for years to come.
The ACM Grace Murray Hopper Award is given to the outstanding young computer professional of the year, selected on the basis of a single recent major technical or service contribution. This award is accompanied by a prize of $35,000. The candidate must have been 35 years of age or less at the time the qualifying contribution was made. Financial support for this award is provided by Microsoft.
“Nina Balcan wonderfully meets the criteria for the ACM Grace Murray Hopper Award, as many of her groundbreaking contributions occurred long before she turned 35,” said ACM President Cherri M. Pancake. “Although she is still in the early stages of her career, she has already established herself as the world leader in the theory of how AI systems can learn with limited supervision. More broadly, her work has realigned the foundations of machine learning, and consequently ushered in many new applications that have brought about leapfrog advances in this exciting area of artificial intelligence.”
Select Technical Contributions
Semi-supervised Learning
Semi-supervised learning is an approach to machine learning in which algorithms use large amounts of easily available unlabeled data to augment small amounts of labeled data to improve predictive accuracy. When semi-supervised learning was first explored, early research suggested some promising results. However, prior to Balcan’s work, there were no general principles for designing and providing formal guarantees for algorithms that leverage both labeled and unlabeled data. By introducing the first general theoretical framework, Balcan showed how to achieve provable guarantees on the performance of such techniques with concrete implications for many different types of semi-supervised learning methods. Her foundational principles for learning from limited supervision were instrumental in advancing this important tool in machine learning and supporting the subsequent work of many other researchers in this area.
Active Learning/Noise Tolerant Learning
Balcan also made significant contributions in the related area of active learning. In active learning, the algorithm processes large volumes of data and intelligently chooses the datapoints to be labeled. Balcan established performance guarantees for active learning that hold even in challenging cases when “noise” is present in the data. These guarantees hold under arbitrary forms of noise, that is, anything that distorts or corrupts the data. This can include anything from a blurry photo, a unit of data that is improperly labeled, meaningless information, or data that the algorithm cannot interpret. Building on this work, Balcan and her collaborators also developed algorithms that can learn more efficiently under more specialized forms of “label noise.” Examples of label noise might include a researcher not being given all of the health symptoms when annotating data to make predictions about a disease, or the data being encoded incorrectly. Her work in active learning in the presence of noise was regarded as a breakthrough in the field.
Clustering
Clustering is an unsupervised learning technique in which an algorithm groups datapoints with similar properties. One goal of clustering is to find meaningful structure in data. An early challenge in the field, however, was to establish a theoretical foundation for what constituted a “meaningful structure” in a dataset. In her early work, Balcan proposed a theoretical foundation for understanding the general kinds of structures that can be detected by clustering, as well as characterizing the functionality of specific clustering algorithms. As she developed her theoretical framework further, she also devised novel clustering algorithms that were derived from these theoretical foundations, and showed applications of these algorithms to computational biology and web search.
2019 ACM Presidential Award
ACM President Cherri Pancake honored Vinton G. Cerf with the 2019 ACM Presidential Award. The award was presented to Cerf at ACM's annual Awards Banquet on June 15 in San Francisco.
His citation reads:
In addition to his well-publicized technical contributions, for which he won the Turing Award, Vint Cerf crafted a unique vision of what ACM could be and achieve as an organization. He has served as a member of ACM Council three times, and was elected ACM President in 2012. After completing his term as Past President, he became the Awards Co-Chair. That much is in the public record. But his singular contribution to ACM remains largely unknown: Vint was the principal driver in establishing the ACM Fellows Program in 1993. The Fellows program, of course, recognizes the top 1% of ACM members from around the world for their outstanding accomplishments and service to the computing community. The luster of becoming a Fellow has not diminished with time. Indeed, with the newer Distinguished Member grade, and with the eminence of each year's Fellows class (13 of whom have gone on to win the Turing Award), the program has only grown in stature. As for impact, Fellows constitute some of ACM's best ambassadors and serve as models for younger members. While the Fellows program is now an established part of the ACM "landscape," this was not always the case—and likely wouldn't be had Vint not championed the concept. This 2019 ACM Presidential Award recognizes his extraordinary record of service to ACM.
2018 ACM Eugene L. Lawler Award for Humanitarian Contributions within Computer Science and Informatics
Meenakshi Balakrishnan was named recipient of the Eugene L. Lawler Award for research, development, and deployment of cost-effective embedded-system and software solutions addressing mobility and education challenges of the visually impaired in the developing world.
Balakrishnan, a professor at the Indian Institute of Technology, Delhi, has dedicated more than a decade to addressing the challenges of the visually impaired by developing low-cost, computing technology-based solutions. Each of his devices has been developed by the meticulous integration of hardware, software, and firmware. His applications have not only improved the quality of life for countless people, but also have made their day-to-day lives dramatically safer. These technologies are especially valuable in the developing world, where there are fewer resources for the visually impaired.
Perhaps his best-known technology is the SmartCane project, which allows the visually impaired to detect items above their knees within a distance of 3 meters. Balakrishnan equipped the probing cane with ultrasonic ranging, wherein the cane conveys the distance of obstacles using vibrations. Balakrishnan has also worked tirelessly to bring the SmartCane to market at an affordable cost. Working with for-profit, nonprofit, and government organizations, he introduced the SmartCane at 5% of the cost of a comparable product in the West. Within India he has made over 70,000 devices available through government initiatives and 45 partner agencies. SmartCane has also won numerous awards, including the Best Paper Award at the International Conference on Mobility and Transport for Elderly and Disabled Citizens (TRANSED) 2010.
Additional technologies Balakrishnan and his lab have developed include the OnBoard bus identification and homing system, which helps the visually impaired identify bus routes and locate the entry door, and The Refreshable Braille, which allows the visually impaired to read digital text line-by-line through a tactile interface.
The Eugene L. Lawler Award for Humanitarian Contributions within Computer Science and Informatics recognizes an individual or group who has made a significant contribution through the use of computing technology. It is given once every two years, assuming that there are worthy recipients. The award is accompanied by a prize of $5,000.
ACM Awards by Category
-
Career-Long Contributions
-
Early-to-Mid-Career Contributions
-
Specific Types of Contributions
ACM Charles P. "Chuck" Thacker Breakthrough in Computing Award
ACM Eugene L. Lawler Award for Humanitarian Contributions within Computer Science and Informatics
ACM Gordon Bell Prize
ACM Karl V. Karlstrom Outstanding Educator Award
ACM Paris Kanellakis Theory and Practice Award
ACM Policy Award
ACM Presidential Award
ACM Software System Award
ACM Athena Lecturer Award
ACM AAAI Allen Newell Award
ACM-IEEE CS Eckert-Mauchly Award
ACM-IEEE CS Ken Kennedy Award
Outstanding Contribution to ACM Award
SIAM/ACM Prize in Computational Science and Engineering
ACM Programming Systems and Languages Paper Award -
Student Contributions
-
SIG Awards
-
How Awards Are Proposed
Scott Aaronson Honored with ACM Prize in Computing
ACM has named Scott Aaronson of the University of Texas at Austin the recipient of the 2020 ACM Prize in Computing for for groundbreaking contributions to quantum computing. Aaronson showed how results from computational complexity theory can provide new insights into the laws of quantum physics, and brought clarity to what quantum computers will, and will not, be able to do. His quantum supremacy experiments allow scientists to give convincing evidence that quantum computers provide exponential speedups without having to first build a full fault-tolerant quantum computer.

ACM Announces 2020 Turing Award Recipients
ACM has named Alfred Aho, Lawrence Gussman Professor Emeritus at Columbia University, and Jeffrey Ullman, Stanford W. Ascherman Professor Emeritus at Stanford University and CEO of Gradiance Corporation, recipients of the 2020 ACM A.M. Turing Award for fundamental algorithms and theory underlying programming language implementation, and for synthesizing these results and those of others in their highly influential books, which educated generations of computer scientists.

ACM, CSTA Announce Cutler-Bell Prize Student Winners
ACM and the Computer Science Teachers Association have announced the 2020-2021 winners of the ACM/CSTA Cutler-Bell Prize in High School Computing. The award recognizes computer science talent in high school students and comes with a $10,000 prize, which they will receive at CSTA's annual conference in July. The 2020-2021 winners are Sahithi Ankireddy, James B. Conant High School, Hoffman Estates, Illinois; Maurice Korish, Rae Kushner Yeshiva High School, Livingston, New Jersey; Brian Minnick, Loudoun Valley High School, Purcellville, Virginia; and Emily Yuan, Thomas S. Wootton High School, Rockville, Maryland.

SIAM, ACM Announce 2021 Computational Science & Engineering Prize Winner
George Em Karniadakis of Brown University was awarded the 2021 SIAM/ACM Prize in Computational Science and Engineering at SIAM's CSE 2021 conference. Karniadakis was recognized for advancing spectral elements, reduced-order modeling, uncertainty quantification, dissipative particle dynamics, fractional PDEs, and scientific machine learning, while pushing applications to extreme computational scales and mentoring many leaders. A Fellow of SIAM, Karniadakis's work has been cited more than 53,500 times.
Read the SIAM news release.

ACM Names 2020 Fellows
ACM has named 95 members 2020 ACM Fellows for significant contributions in areas including artificial intelligence, cloud computing, computer graphics, computational biology, data science, human-computer interaction, software engineering, theoretical computer science, and virtual reality, among other areas. The ACM Fellows program recognizes the top 1% of ACM Members for their outstanding accomplishments in computing and information technology and/or outstanding service to ACM and the larger computing community.

ACM Names 2020 Distinguished Members
ACM has named 64 Distinguished Members for outstanding contributions to the field. All 2020 inductees are longstanding ACM members and were selected by their peers for a range of accomplishments that have contributed to technologies that move the computing field forward. The ACM Distinguished Member program recognizes up to 10 percent of ACM worldwide membership based on professional experience and significant achievements in computing.

List of ACM Awards
-
Career-Long Contributions
-
Early-to-Mid-Career Contributions
-
Specific Types of Contributions
ACM Charles P. "Chuck" Thacker Breakthrough in Computing Award
ACM Eugene L. Lawler Award for Humanitarian Contributions within Computer Science and Informatics
ACM Gordon Bell Prize
ACM Karl V. Karlstrom Outstanding Educator Award
ACM Paris Kanellakis Theory and Practice Award
ACM Policy Award
ACM Presidential Award
ACM Software System Award
ACM Athena Lecturer Award
ACM AAAI Allen Newell Award
ACM-IEEE CS Eckert-Mauchly Award
ACM-IEEE CS Ken Kennedy Award
Outstanding Contribution to ACM Award
SIAM/ACM Prize in Computational Science and Engineering
ACM Programming Systems and Languages Paper Award -
Student Contributions
-
SIG Awards
-
How Awards Are Proposed